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a b s t r a c t

In this paper, different confinement potential approaches are considered in the simulation of size effects
on the optical response of silver spheres with radii at the few nanometer scale. By numerically obtaining
dielectric functions fromdifferent sets of eigenenergies and eigenstates, we simulate the absorption spec-
trum and the field enhancement factor for nanoparticles of various sizes, within a quantum framework
for both infinite and finite potentials. The simulations show significant dependence on the sphere radius
of the dipolar surface plasmon resonance, as a direct consequence of energy discretization associated to
the strong confinement experienced by conduction electrons in small nanospheres. Considerable reliance
of the calculated optical features on the chosen wave functions and transition energies is evidenced, so
that discrepancies in the plasmon resonance frequencies obtainedwith the three studiedmodels reach up
to above 30%. Our results are in agreement with reported measurements and shade light on the puzzling
shift of the plasmon resonance in metallic nanospheres.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, metallic nanoparticles have drawn attention
because of their boundary-located excitations originated fromcon-
duction electrons, so-called Localized Surface Plasmon Resonances
(LSPRs) [1–4]. Those LSPRs are widely understood in terms of
collective oscillations of the conduction electron gas, and their
frequencies typically lie in the terahertz range [5–7].

Considerable experimental and theoretical efforts in this energy
range have been made to fully understand the physics under-
lying the optical response of those structures since applications
encompass diverse fields such as cancer therapy [8], nanophotonic
devices [9–11], biosensing [12], and catalysis [13,14], among oth-
ers [15–17].

Nowadays, light absorption and scattering are well-known to
depend on the material, size and shape of the nanoparticles, be-
cause of the increment of the surface to volume ratio [18–21].
However, experimental difficulties in classifying and isolating such
small structures on the one hand, and the computationally de-
manding atomistic calculations in this regime where the number
of atoms is at the order of 102–103, on the other hand, make the
characterization of that dependence a challenging problem.
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Regarding the size dependence of the LSPRs in metallic
nanospheres, Scholl et al. reported few years ago a strongly fluc-
tuating behavior in the 1–5 nm radius range, as observed by
using Electron Energy-Loss Spectroscopy (EELS) [22]. That unex-
pected result was later challenged by H. Haberland [23], and Kisma
et al. [24], by basically arguing that the asymptotic regime (where
quantum confinement effects start being negligible) is valid for
diameters as low as 2 nm or less.

In this work, we perform a computationally inexpensive
method to study the optical response of silver nanoparticles in
this controversial size range, articulating classical electrodynamics
(pertinent because of the very high number of photons involved in
the related experimental set-ups), with a quantum treatment of
the conduction electrons.

We calculate dielectric functions under three different ap-
proaches for the confining potential representing the nanospheres.
Significant quantitative differences among the optical responses
obtained from those approaches are observed, although the results
from all three models are found qualitatively consistent with the
available experimental measurements.

The paper is structured as follows: In the first part, the the-
oretical framework underlying the calculations is provided. In
the second part, we present the numerical simulation results
and a discussion. Concluding remarks are drawn at the last
part.

https://doi.org/10.1016/j.cpc.2018.02.012
0010-4655/© 2018 Elsevier B.V. All rights reserved.
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2. Theoretical framework

We carry out the simulations in two fundamental stages: first,
we obtain the dielectric function for each of the confinement
models, and then we calculate two physical observables (absorp-
tion cross section and field enhancement), associated to each of
those potentials.

2.1. Dielectric function

When a charge carrier is trapped in a region of size at the
order of the corresponding de Broglie’s wavelength (nanometric
scales for conventional materials), values of energy allowed for
that particle are discrete and spectral continuity cannot be con-
sidered anymore [25,26]. This is the case for conduction electrons
in metallic nanospheres. That makes any classical model used in
describing the electron gas response to exciting radiation, to fail at
some point under reduction of the metal size. However, what that
limit is, persists as a matter of debate [22,24].

Experimentally, contrastive behaviors between the 10–100 nm
and the 1–10 nm regimes have been reported [22,27,28]. However,
independent computational studies in that later regime are scarce
because it is simultaneously too big for atomistic calculations [24],
and too small for a continuous classical modeling [29].

Free electron approaches as the Drude and the hydrodynam-
ical models, which considers the valence electrons as classical
particles, are the most widely used to obtain the dielectric func-
tion of metal nanoparticles [30–35]. However, a quantum model
seems more appropriate for studying electrons in nanometric
structures [29,36].

In this study,weuse a dielectric function first introduced by Cini
and Ascarelli [37], that considers the charge carriers as quantum
particles subject to spatial trapping. Accordingly, the dielectric
function of a single metallic nanoparticle under the influence of an
electromagnetic wave with frequency ω is given by

ϵ(ω) = ϵ∞ +
ω2

p

N

∑
i,f

sif (Fi − Ff )
ω2

if − ω2 − iωγif
, (1)

where ϵ∞ is the interband contribution of core electrons, ωp =(
4πne2
m∗

)(1/2)
is the bulk plasmon frequency, N is the total number

of conduction electrons (in silver, the same as the number of atoms
in the nanoparticle), andωif and γif are respectively, the frequency
and damping for a transition from an initial state i to a final state
f . Temperature dependence is included through Fi and Ff which
are the Fermi–Dirac distribution values for the initial and final
states [27]. The oscillator strength for the transition between states
|i⟩ and |f ⟩ is defined as

sif =
2m0ωif

h̄
|⟨f |z|i⟩|2, (2)

where |⟨f |z|i⟩| is the corresponding transition dipole moment,
under z-linearly polarized incident light [38].

Fig. 1(a) presents a schematic diagram of the excitation pro-
cess and the corresponding stimulated transitions between single
particle populated and unoccupied discrete energy states. This
model neglects the correlation effects, which in the considered
size regime are expected to exist but not to dominate. Hence, the
Schrödinger equation for the electron conducting gas is solved in
the non-interacting approach, i.e. in the one electron picture.

Since the eigenenergies and eigenstates of the electron are
required for the calculation of the dielectric function, its particular
features are expected to depend significantly on the potential used
to model the carrier confinement. Then, details of the different
cases studied in these calculations are presented in the next sub-
section.

2.2. Spherical confinement

Atomistic calculations in small silver clusters show that their
shapes are well described as icosahedra or decahedra [39]. How-
ever as the particle size increases, their geometries exhibit more
facets, ultimately resembling spheres [40]. According to Figure 3 in
Ref. [22], for a radius larger than 1 nm, the spherical approximation
fits well the nanoparticle shape.

In this work, the dielectric functions for the various studied
sizes are obtained within three different approaches for the spher-
ical confining potential, namely: (A) infinite confinement with
asymptotic eigenenergies and wave functions, (B) infinite confine-
ment with exact eigenenergies and wave functions, and (C) finite
confinement with numerical eigenenergies. The first two models
share the infiniteness of the potential barriermodeling the particle
boundary, while the last two share the accuracy in the energy
values.

2.2.1. Infinite confinement
The hard-wall spherical well is one of the few potentials with

an exact known solution. Hence, given the shape of the nanos-
tructures under study, plus the assumption of an absolutely im-
penetrable barrier, the wave functions and allowed energies of a
conduction electron of effective mass m∗ confined in a particle of
radius R, are, respectively,

ψn,l,m(r, θ, φ) =
1

|jl+1(αnl)|

√
2
R3 jl

(αnl

R
r
)
Ym
l (θ, φ) (3)

and

En,l =
h̄2α2

ln

2m∗R2 , (4)

where jl represents the lth spherical Bessel functions, Ym
l the stan-

dard spherical harmonics, and αnl the nth zero of jl [41].
Thus, the eigenenergies and eigenfunctions of each electron in

the non-interacting conduction gas are in principle fully deter-
mined, so that the necessary oscillator strengths and transition
energies for the dielectric function can be obtained. However,
because there is not a recurrent relation between zeros of spherical
Bessel function with different l, the calculation results at last in a
numerical problem.

As proposed in Ref. [22], the asymptotic approximation that
provides wave functions and energies in a compact form, can
be used to simplify the calculations. Within such an approxima-
tion [42], the spherical Bessel functions appearing in Eq. (3) and
the eigenenergies in Eq. (4) are correspondingly reduced to

jl(x) ≈
1
x
cos

[
x −

π

2
(l + 1)

]
(5)

and

En,l =
h̄2

2m∗R2

[
π

(
n +

l
2

+ 1
)]2

. (6)

Using the approximation given by Eqs. (5) and (6), straightfor-
ward calculation of the dielectric function can be carried out at
a minimum computational cost. Nevertheless, a price is paid in
accuracy because these expressions are only suitable for small l and
x ≫ l2/2 + l [41] [model (A)], as can be seen in Table 1, where
we present a comparison between energies given by Eq. (4) with
the corresponding ones from Eq. (6) for a nanoparticle of radius
R = 1 nm. Complete agreement is observed for l = 0, whereas a
noticeable overestimation by the approximation becomes signifi-
cant as l increases.

Fig. 1(b) shows jl(αlnr/R) and its asymptotic approximation
[Eq. (5) into Eq. (3)], as functions of the normalized radius for
different values of l (n = 1). It is worth to note that for l = 0 both
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Fig. 1. (a) Schematics of the plasmon excitation and associated discrete energy transitions in the quantized system. (b) jl and its asymptotic approximation (A.A.) as functions
of the normalized position for n = 1 and different l’s.

functions are the same, but start differing strongly as l increases.
Thus, it is anticipated that model (A) will fail in quantitatively
reproducing the experimental observations.

Given that spherical Bessel functions are implemented in most
of the programming languages and packages, we also calculate di-
electric functions by using the exact eigenstates and eigenenergies
obtained from Eqs. (3) and (4) [model (B)]. In such a case, there is
not analytical form for the transition energies and dipolemoments,
but the later can still be reduced by exploiting the azimuthal
symmetry. Taking z = r cos θ into the dipole integral

⟨f |z|i⟩ =

∫ 2π

0

∫ π

0

∫ R

0
drdθdφ r3 sin θ cos θ

× Ψ ∗

nf ,lf ,mf
(r, θ, φ)Ψni,li,mi (r, θ, φ),

(7)

this splits in angular and radial parts, which, respectively read

Iang =

√
(li + mi + 1)(li − mi + 1)

(2li + 1)(2li + 3)
δ∆l,+1

+

√
(li + mi)(li − mi)
(2li + 1)(2li − 1)

δ∆l,−1

(8)

and

Irad =
1

|jlf +1(αnf lf )|
1

|jli+1(αni li )|

(
2
R3

)

×

∫ R

0
drjlf

(αnf lf

R
r
)
r3jli

(αni li

R
r
)
.

(9)

Then, the oscillator strength is different from zero only for
the transitions satisfying ∆l = lf − li = ±1, as expected

Table 1
Comparison between exact energies (upper) and asymptotically approximated en-
ergies (lower) in meV, for different values of l and n (R = 1 nm).

n = 0 n = 1 n = 2 n = 3 n = 4

l = 0 376.03 1504.11 3384.25 6016.45 9400.71
376.03 1504.11 3384.25 6016.45 9400.71

l = 1 769.26 2273.77 4530.04 7538.31 11298.6
846.64 2350.18 4606.35 7614.57 11374.9

l = 2 1265.57 3151.57 5785.61 9170.69 13307.4
1504.11 3384.25 6016.45 9400.71 13537.0

l = 3 1860.45 4134.43 7148.86 10912.1 15426.0
2350.18 4606.35 7614.57 11374.9 15887.2

l = 4 2550.93 5219.83 8617.81 12760.9 17653.2
3384.25 6016.45 9400.71 13537.0 18425.4

l = 5 3334.9 6405.72 10190.75 14715.83 19987.75
4606.35 7614.57 11374.9 15887.2 21151.69

l = 6 4210.76 7690.4 11866.16 16775.47 22428.54
6016.45 9400.71 13537.0 18425.4 24065.92

for plasmons coupled to photons, because of angular momentum
conservation.

Beside the above selection rule, oscillator strengths in the sum-
mation of Eq. (1)are weighted by the Fermi–Dirac distribution,
since initial (final) states must be occupied (empty) for a transition
to contribute.

2.2.2. Finite confinement
Going one step further, we can use a more realistic picture

considering a spherical finite binding potential to represent the
electron confinement inside the nanoparticle [model (C)]. This
implies to solve numerically the Schrödinger equation for the kth
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Fig. 2. Eigenenergies and the corresponding probability densities along the plane z = 0 of some bound states, for a confined conduction electron in a nanosphere of radius
1 nm. (a) Ground state, (b) first excited state, (c) second excited state, (d) last state before the Fermi level, (e) Fermi level, (f) first estate after the Fermi level.

quantum state, which is given by[
−h̄2

∇
2

2m∗
+ V (r)

]
Ψk(r, θ, φ) = EkΨk(r, θ, φ), (10)

where the central potential is

V (r) =

{
0 if 0 < r < R

V0(R) otherwise.
(11)

The well depth is related to the Fermi energy EF (R), and to the
work function of the particleW (R) (defined as the energy required
to remove one electron from the nanoparticle), according to

V0(R) = EF (R) + W (R). (12)

On one side, the work function is calculated following Ref. [43],
so that for small particles, its size dependent value is obtained from

W (R) = 4.37 +
5.4
R(Å)

, (13)

where 4.37 eV is the average work function for Bulk Ag, and 5.4 =
3
8 e

2 is a parameter that accounts for the difference in the work
function for a conducting plane and a sphere.

On the other side, the Fermi energy depends specifically on
the number of particles, which in turn determines the number
of conduction electrons occupying the available electronic states.
An initial confinement potential must be assumed to obtain states
that are populated with conduction electrons following the Pauli
exclusion principle, so that an a priori Fermi level is established.
Then, such an energy E(0)

F is inserted into Eqs. (10) and (12), to find
new eigenstates that lead to a corrected Fermi level. This process
can be iteratively carried out up to find the appropriate EF .

To obtain the a priori Fermi level, we start with the infinite
well of previous section. The number of particles as function of the
radius is estimated by fitting ab initio results by He et al. in Ref.
[44], to the size range studied in this work. Therefore, the number
of conduction electrons is taken as

N(R) ≈ 246R3. (14)

In calculating oscillator strengths for the dielectric response
within model (C), wave functions from model (B) were finally
used, given that preliminary calculations of the pertinent dipole

moments revealed differences below 1% as compared to the cases
in which the corresponding numerical wave functions, at much
higher computational cost, were used.

Fig. 2 shows some of the numerically obtained eigenenergies
and the corresponding probability densities for a conduction elec-
tron confined in a silver nanosphere of radius R = 1 nm (246
atoms). The depth of the potential well in the plotted case is 11.316
eV (where an a priori Fermi energy E(0)

F = 6.406 eV, was taken).
These wave function profiles evidence that the spill-out effects

(electron probability density penetrating the potential barrier) are
negligible, even for highly excited states.

Aiming further optimization of the calculation times, addition-
ally to the selection rule ∆l = ±1 from Eq. (8), transition en-
ergies with relevant contributions to the dielectric function were
required to satisfy KBT ≪ h̄ωif ≪ V0. In other words, not too small
because of the typical temperatures at which related experiments
are carried out (much lower than the Fermi temperature), and not
too large because of the electromagnetic range of interest (optical
frequencies).

2.3. Optical response

2.3.1. Absorption spectrum
In the studied size regime, the wavelength of the incident

light is much larger than the radius of the metallic particle, and
the extinction cross section reduces to the absorption compo-
nent [45,46], given in terms of the dielectric function by

Abs(ω) ∝
ωϵ

3/2
m Im[ϵ(ω)]

cm
[
(Re[ϵ(ω)] + 2ϵm)2 + (Im[ϵ(ω)])2

] , (15)

where ϵm is the dielectric constant of the surrounding media and
cm the light speed in that media. Re[ϵ(ω)] and Im[ϵ(ω)] are the real
and imaginary parts of the metallic particle’s dielectric function,
respectively [47].

In our simulations we use ϵm = 2.5, assuming a glass matrix
embedding the silver nanospheres.

2.3.2. Field enhancement
The field enhancement factor (FEF) [29,48]is here defined as

the squared norm of the ratio between the scattered electric field
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Fig. 3. Real (left) and Imaginary (right) parts of the dielectric function as functions of
the exciting photon energy for silver nanoparticle of different radii, calculated with
each of the three considered models. Black line → Model (A), Red line → Model
(B), and Blue line → Model (C). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

calculated at the north pole of the sphere E⃗out , and the amplitude
of the incident z-polarized electric field E⃗inc , i.e.

FEF =
| ⃗Eout |

2

E2
0
. (16)

The scattered field, satisfying theMaxwell equations inmaterial
media, is obtained from the Helmholtz equation

∇
2E⃗ − k20

(
ϵ(ω) −

iσ
ωϵ0

)
E⃗ = 0, (17)

where σ =
ω
4π iϵ(ω) is the nanoparticle complex conductivity and

k0 = ω
√
ϵ0µ0, with ϵ0 and µ0 the values of permittivity and

permeability in vacuum, respectively [29].

3. Results and discussion

To numerically solve the Schrödinger equation, as well as
the Helmholtz equation, we use a standard finite element

method (FEM), implemented in the Comsol Multiphysics Package
[29,49–52], on a commercial computer with an i7 processor of
2 GHz. The typical calculation time lies in the scale of hours,
instead of days and weeks, as usual for DFT jellium or atomistic
simulations [24].

Along the calculations, we use the following set of standard
parameters for silver, taken from Refs. [19,22,53,54]: ϵ∞ = 3.66,
m∗

= 0.99 m0, ωp = 9.01 eV, and γ (R) = γbulk +
A vF
R , with

γbulk = 2.43 GHz, A = 0.25 and vF = 1.4 × 106 m/s.
Fig. 3 shows the real and imaginary parts of the dielectric

function for silver nanospheres of different radii, calculated within
the three considered models. It can be appreciated how model
(A), because of the more oscillatory character of the approximated
wave functions, increases the number of peaks in the imaginary
part of the nanosphere dielectric response. Meanwhile models
(B) and (C) present overall similar features, though a slight but
consistent blue shift is observed for model (B), as compared to the
one including finiteness in confinement [model (C)].

Complementarily, and distinctively for the smallest particles,
the real part of the dielectric function highlights how the similarity
between the results from models (B) and (C) is certainly higher
than that between results from model (A) and results from any of
the other twomodels. In otherwords, inaccuracies originated from
the asymptotic approximation are larger than those raised from the
infiniteness of the confinement potential.

In Fig. 4, the absorption spectra and enhancement factors of
metallic particles are plotted for various nanosphere sizes, as func-
tions of the exciting light energy.

Oscillations of the main resonance are observed for all three
models, although the enhancement factor magnitude in model (A)
evolves anomalously with size (noticeably non-monotonic behav-
ior, whereas it is expected to increase with size). There is also
an underestimation of the FEF in the results from model (A), due
to spurious fluctuations of the wave functions and consequent
reduced magnitude of the contributing oscillator strengths.

Resonance blue-shifts for models (A) and (B) as compared to
model (C) are both evident. However, such shifts for model (A) are
substantially larger than the ones for model (B). It is worth noting
that the main physical reasons underlying those discrepancies are
similar but not exactly the same. In model (A), the disparities
are mostly related to the poorly approximated energy values of
the contributing transitions with large l. On the other hand, the
shifts in model (B) are originated in the bigger transition energies
associated to the infiniteness of the confining potential. Then, the
accuracy of the former approach is again revealedweaker than that
of the later.

In Fig. 5(a), we compare the results from the different models
of the LSPR energy obtained at the maximum enhancement field
factor for each particle size. These are also set against the experi-
mental data reported by Scholl et al. in Ref. [22].

In an attempt to demonstrate that fluctuation of the plasmon
resonances is related to the discrete transitions considered in the
dielectric function from Fig. 3, size depending energies for two
of the main contributing transitions (computed within model B)
are shown in Fig. 5(b). The chosen transitions were those with
the lowest energies, allowed from the Fermi level [for example,
in the case R = 1 nm, the quantum numbers of the Fermi level
are n = 1, l = 5; and the numbers of the unoccupied state
for the chosen transition satisfying ∆l = −1 (∆l = +1) are
n = 2 , l = 4 (n = 1 , l = 6), whose corresponding energies
can be found in Table 1]. Such transition energies exhibit a non-
monotonic and uncorrelated behavior, which is rooted in the fact
that changes in size simultaneouslymodify the number of particles
to be allocated in the available electronic states, and the spacing
between energy levels. Thismakes the plasmon resonance swaying
and very sensitive to slight size changes in the studied radius
regime.
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Fig. 4. (a) Normalized optical absorption and (b) FEF, as functions of the ex-
citing photon energy, calculated within the three considered models for various
nanosphere sizes. Black line → Model (A), Red line → Model (B), and Blue line →

Model (C). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Remarkably, oscillations of the absorption and FEF peaks in the
studied size range are observable in all usedmodels, as a direct con-
sequence of including transitions between discrete energy states
for the excited electron in the conduction gas. As expected, Fig. 5(a)
suggests that the three models start to converge at R = 5 nm,
where the confinement effects become negligible [28,55].

By tuning the parameter ϵ∞, the computed data can be fitted
to the proper energy range, accordingly with experimental obser-
vations, so that Fig. 5(a) displays good agreement between simu-
lations and measured fluctuations, given that calculations include
discretization of states for conduction carriers.

Furthermore, our results suggest that the measured fluctu-
ations are not originated in the substrate neither in residual
ligands [23,24], but are intrinsic to the quantum nature of the
confined electron gas [29].

4. Conclusions

In this work, we simulated the optical response of ultra-small
silver nanoparticles, within three confinement models, which
share inclusion of discretized electron energy levels in the di-
electric function. The used models differ in the eigenstates and
eigenenergies employed for calculating the dipole moments and
transition energies. The first model assumes infinite confinement

Fig. 5. (a) Plasmon energy as a function of the nanoparticle diameter. Squares, dots
and triangles show the results obtainedwithinModels (A), (B) and (C), respectively.
For comparison, experimental EELS data extracted from Ref. [22] are also shown.
(b) Energy transitions in model (B), of the stronger contributions from the Fermi
level to unoccupied states. Squares (circles) are for the transitions satisfying ∆l =

−1 (∆l = +1).

and asymptotically approximated eigenenergies and wave func-
tions, the second onemaintains infinite confinement but considers
exact solutions for eigenenergies andwave functions, and the third
one considers finiteness of the confinement and uses numerically
obtained eigenenergies.

For those three models, frequency dependent optical ab-
sorptions and field enhancement factors were calculated for
nanospheres of various sizes, with diameters ranging from 2 nm
up to 10 nm.

In the explored size regime, the computed data consistently
show oscillations of the localized surface plasmon resonance en-
ergy for all the three models, being the main difference between
them the magnitude of the field enhancement and the precise res-
onance energy for each size, whereas the swaying character of that
resonance transcends the confinement particularities. This oscil-
lating behavior can be directly related to discreteness of transitions
in the electron gas, as response to the exciting electromagnetic
field.

Overestimation of the plasmon resonance energies larger than
25%, alongwith underestimation by a factor 4 of the field enhance-
ment, is observed under the model with infinite confinement and
approximated eigenstates, as contrasted to the other two models
which consider accurate eigenenergies. Comparing results from
those later approaches, effects of confinement finiteness are found
appreciable but not substantial, consisting of an undeviating blue
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shift of around ∼5% for the model in which the potential barrier
height is taken as infinite.

More generally, our results contribute to clarify the physical
origin of the strong fluctuations, reported in Ref. [22], and support
the interpretation according with such non-monotonic and very
size-sensitive optical response relates to the quantum nature of
confined conduction electrons, instead of coming from ligand pres-
ence or substrate impurities, as proposed more recently in Refs.
[23,24].
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