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Using the theory for surface waves, the propagation of a disturbance in elastic media is studied. An important 

and sufficient condition for achieving Bloch oscillations is the variation of the depth of the fluid. This varia-

tion produces changes in the refraction index and in the wave number of the disturbance in such a way that 

those changes exhibit discontinuities whose magnitudes are directly associated to the predicted frequency. A 

dispersion relation, that allows us to obtain the oscillations of the disturbance, is determined and applied. The 

calculation for stationary waves with such relation shows some indications suggesting oscillations which are 

a reproduction in the space domain of the Bloch oscillations for electrons under an electric field. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Electronic Bloch oscillations were predicted 70 years ago, as a consequence of the translational periodic 

distribution of atoms in crystals under the influence of an electric field. However, the experimental con-

firmation had to wait until artificial periodic structures were grown in the laboratory. As a result of these 

achievements, photonic and atomic Bloch oscillations have also been found [1-4]. All these phenomena, 

in intrinsically different systems, show common features that suggest the extension of these regularities 

to mechanical systems, as has been discussed in ref. [5]. 

The main idea consists in trying to find a unified description for all these systems. Due to the quantum 

nature of the known Bloch oscillations, the goal of the present work is to describe a classical system by 

using formal principles of physics and interpret the results in terms of similarities with the quantum sys-

tems. 

First, we establish the conditions that make it possible to observe the Mechanical Bloch Oscillations 

(MBO) by using the theory of Hydrodynamics applied to the proposed experimental design [6]. 

Next, after choosing a dispersion relation for the mechanical system, we proceed to find the relevant 

parameters to detect MBO; finally the results of our related calculations are discussed. 

2 The system 

The extension of the optic-electronic analogy has been proposed for elastic wave systems propagating in 

periodic structures [5] within the framework of Hydrodynamics. An elastic medium such as a liquid, 

whose surface suffers a point perturbation, exhibits the propagation of it, determined by the capillarity 

characteristics of the liquid, the gravitational interaction, the type of the perturbation and the geometry of 

the recipient. 

A two-dimensional analog of a plane wave can be generated in a ripple tank by a flat board that oscillates 

up and down in the water to produce wave-fronts that are straight lines. 

The classical stationary wave equation is used to describe the perturbation, which can be written as 

 

 (1) 

 

 *  Corresponding author: e-mail: acamacho@uniandes.edu.co 

0),()(
2

2

2
=Ψ+∇ yx

V

w



phys. stat. sol. (c) 2, No. 10 (2005) / www.pss-c.com 3537 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

),(
2

2

yxhg
K

w
=

that is known as the Helmholtz equation, where w is the angular frequency and V the phase velocity of 

the propagation, which is related to the dispersion relation of the system [6]. 

For fluids with negligible viscosity the dispersion relation depends on the height of the fluid, capillarity 

effects and gravitational interaction where K is the wave vector, T the surface tension and ρ the density 

of the liquid  

 

                      (2) 

 

This relation can be studied in several limits taking into account the parameters of perturbation and the 

boundary conditions. We used the surface wave limit of gravity in which the capillarity effects are negli-

gible due to the fact that the wavelength is larger than the depth of the fluid [7].  

Under these conditions the dispersion relation is reduced to consider only non-dispersive waves and the 

depth h of the medium is a function of the local point where the field Ψ is calculated. 

 

                                                                                                                                                                    ( 3) 

Under these conditions the propagation velocity and the refraction index depend on h1/2, making the 

depth of the fluid the relevant parameter to control the functional dependence of the wave vector through 

the surface of the elastic medium 

By introducing (3) in (1), and applying variable separation for free ends boundary conditions, is obtained 

for the deformation Ψ  the expression 

                                                                                                                                                                    (4)                                   

 where A is the amplitude of the perturbation and X(x) the solution of the differential equation in the 

direction in which the deep is changing, as we are going to discuss in  the next section. 

 

3 The main characteristics of the propagation medium 

In order to create a Wannier ladder in the wave vector, we choose the dependence of the refraction index 

as a discontinuously increasing function on the depth h [5, 8]. The depth varies in x direction while y is a 

constant. Searching a linear increasing of the refraction index with the position, an adequate function 

fulfilling these requirements is  

                                                                                                                                                                    (5) 

 

where the parameters α and β are constants that define the geometry of the bottom of the recipient which 

contains the liquid; β is associated with the change of depth per unit length, while α shifts the origin 

along the y axis, it generates discontinuities in K to define the Wannier Ladder [9]. 

The designed recipient requires several regions with two different depth functions, as given in equation 

(5) with different values of α �along the x axis. 

The initial conditions are determined by the length in the y axis and the smoothness of the field Ψ at the 

boundaries between different depth regions. So, the field and its derivative should be continuous at the 

interfaces, and then the solution of the differential equation for X(x) for the chosen conditions is  

                                                                                                                   

                                                                                                                                                                  

                                                                                                                                                                    (6) 

 

 

 

where H[n,τ] is the nth order Hermite polynomial and F1[m,1/2,τ] is the mth order confluent hyper geo-

metric function. The constants a, b and c are determined by the geometric parameters α and β, the fre-

quency w, the K vector in direction y and the gravity g, following 

                                                                                                                                                                    (7)                                   
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while t1 and t2 are the integration constants, which should be different for each region in x direction due 

to the alternating conditions. 

The studied system is a liquid confined in a square boundary and variable depth h container. Figure 1 

shows the lateral profile and the perspective view of the designed recipient. 

 

 

 

 

 

 

 

 

                  

                                      a)                                                                      b) 

Fig. 1 a) Lateral profile of the recipient. b) View of the bottom of the recipient.  

 

Following the extension proposed in [5], and the deep function discussed above the space period of the 

MBO oscillations is given by 

                                                                                                                                                                    (8) 

 

where is remarkable the inverse linear dependence on D (equivalent to the lattice constant) and the direct 

dependence on the square root of β, that in analogy with the electronic case, is playing the important role 

of the external field to define the period of the Bloch-like oscillations.  

 

4 Results and discussion 

In order to test the model, we propose the design of an ripple tank filled with a liquid, which is confined 

within a volume of square surface of 1000 m2 and variable depth h with following parameters:   w=π/10 

s-1, Ky = 0.062 m–1, α1 =0 m, α2 = 20. 

As an illustration of our results we present following features. In Figs. 2(a), 2(b) and 2(c) is shown one 

main fringe, which depends on the variation of β and D and accounts for the predicted MBO space pe-

riod in (8). Moreover, also the numerical value for the width of the fringe agrees very well with the pre-

dicted value. Since this is the typical localization feature for the Bloch oscillations, we proceed to con-

firm our proposal by testing the dependence of the fringe width on the external field (β ) and the lattice 

constant (D) choosing following parameters; related to Fig. 2(a), in Fig. 2(b) with double value of D, and 

in Fig. 2(c), with β divided by ten, so its square root is approximately reduced three times. The suppres-

sion of the external field is illustrated in Fig. 2(d) for the flat bottom case (β = 0), in complete analogy 

with a simple superlattice periodic potential (E = 0) in electronic systems. This agrees with reference [9], 

where is shown for elastic disturbances that the bottom design influences the amplitude of the stationary 

wave and forms fringes associated with transmission band gaps.  

Extending language from electronic Bloch oscillations to this classical system, the main fringe in Figs. 

2(a),(b) and (c) can be interpreted in terms of uncertainty principle, considering that x resolution, that is 

to say, the capability to observe the initial disturbance features, is limited for discontinuities (indetermi-

nation) in Kx .  

In conclusion, we found conditions to form Wannier Ladder and the related MBO in a mechanical sys-

tem, and report strong indications for the existence of Bloch-like oscillations in a system such as a ripple 

tank, with a carefully designed bottom, given by a surface that oscillates up and down on the liquid sho-

wing even the localization of the oscillations as an external field, squared root of α is applied. 
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                                            a)                                                                              b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             c)                                                                            d) 

Fig. 2 Field Ψ calculated for the ripple tank with: a) β = 2250, D = 50; b) β = 2250, D = 100; c) β = 225, D = 50; 

and d) alternating flat bottom, D = 50. 
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